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HOMOLOGY MODELING
Elmar Krieger, Sander B. Nabuurs, and Gert Vriend

The ultimate goal of protein modeling is to predict a structure from its sequence with
an accuracy that is comparable to the best results achieved experimentally. This would
allow users to safely use rapidly generated in silico protein models in all the contexts
where today only experimental structures provide a solid basis: structure-based drug
design, analysis of protein function, interactions, antigenic behavior, and rational design
of proteins with increased stability or novel functions. In addition, protein modeling
is the only way to obtain structural information if experimental techniques fail. Many
proteins are simply too large for NMR analysis and cannot be crystallized for X-ray
diffraction.

Among the three major approaches to three-dimensional (3D) structure prediction
described in this and the following two chapters, homology modeling is the easiest
one. It is based on two major observations:

1. The structure of a protein is uniquely determined by its amino acid sequence
(Epstain, Goldberger, and Anfinsen, 1963). Knowing the sequence should, at
least in theory, suffice to obtain the structure.

2. During evolution, the structure is more stable and changes much slower than
the associated sequence, so that similar sequences adopt practically identical
structures, and distantly related sequences still fold into similar structures. This
relationship was first identified by Chothia and Lesk (1986) and later quantified
by Sander and Schneider (1991). Thanks to the exponential growth of the
Protein Data Bank (PDB), Rost (1999) could recently derive a precise limit for
this rule, shown in Figure 25.1. As long as the length of two sequences and
the percentage of identical residues fall in the region marked as “safe,” the two
sequences are practically guaranteed to adopt a similar structure.
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Figure 25.1. The two zones of sequence alignments. Two sequences are practically guaranteed

to fold into the same structure if their length and percentage sequence identity fall into the

region marked as ‘‘safe.’’ An example of two sequences with 150 amino acids, 50% of which are

identical, is shown (gray cross).

Imagine that we want to know the structure of sequence A (150 amino acids
long, Figure 25.2, steps 1 and 2). We compare sequence A to all the sequences of
known structures stored in the PDB (using, for example, BLAST), and luckily find
a sequence B (300 amino acids long) containing a region of 150 amino acids that
match sequence A with 50% identical residues. As this match (alignment) clearly falls
in the safe zone (Fig. 25.1), we can simply take the known structure of sequence B
(the template), cut out the fragment corresponding to the aligned region, mutate those
amino acids that differ between sequences A and B, and finally arrive at our model
for structure A. Structure A is called the target and is of course not known at the
time of modeling. In practice, homology modeling is a multistep process that can be
summarized in seven steps:

1. Template recognition and initial alignment
2. Alignment correction
3. Backbone generation
4. Loop modeling
5. Side-chain modeling
6. Model optimization
7. Model validation

At almost all the steps choices have to be made. The modeler can never be sure to
make the best ones, and thus a large part of the modeling process consists of serious
thought about how to gamble between multiple seemingly similar choices. A lot of
research has been spent on teaching the computer how to make these decisions, so
that homology models can be built fully automatically. Currently, this allows mod-
elers to construct models for about 25% of the amino acids in a genome, thereby
supplementing the efforts of structural genomics projects (Sanchez and Sali, 1999,
Peitsch, Schwede, and Guex, 2000). This average value of 25% differs significantly
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Step 1 and 2: Template identification
      and alignment

Target sequence A (150 residues)

Template sequence B (arabinose-binding protein, 300 residues)

Step 3 - Backbone generationStep 4 and 5 - Loop and side chain modeling

Step 6 - Model optimization

Aligned region

Figure 25.2. The steps to homology modeling. The fragment of the template (arabinose-binding

protein) corresponding to the region aligned with the target sequence forms the basis of the

model (including conserved side chains). Loops and missing side chains are predicted, then the

model is optimized (in this case together with surrounding water molecules). Images created with

Yasara (www.yasara.com).
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between individual genomes, ranging from 16% (Mycoplasma pneumoniae) to 30%
(Haemophilus influenzae) and increasing steadily thanks to the continuous growth of
the PDB. For the remaining ∼75% of a genome, no template with a known structure
is available (or cannot be detected with a simple BLAST run), and one must use fold
recognition (Chapter 26), ab initio folding techniques (Chapter 27), or simply an exper-
iment to obtain structural data (Chapters 4, 5, and 6). While automated model building
provides high throughput, the evaluation of these methods during CASP (Chapter 24)
indicated that human expertise is still helpful, especially if the alignment is close to
the twilight zone (Fischer et al., 1999).

THE SEVEN STEPS TO HOMOLOGY MODELING

Step 1: Template Recognition and Initial Alignment

In the safe homology modeling zone (Fig. 25.1), the percentage identity between the
sequence of interest and a possible template is high enough to be detected with sim-
ple sequence alignment programs such as BLAST (Altschul et al., 1990) or FASTA
(Pearson, 1990).

To identify these hits, the program compares the query sequence to all the sequences
of known structures in the PDB using mainly two matrices:

1. A residue exchange matrix (Fig. 25.3). The elements of this 20 ∗ 20 matrix
define the likelihood that any two of the 20 amino acids ought to be aligned. It is
clearly seen that the values along the diagonal (representing conserved residues)
are highest, but one can also observe that exchanges between residue types with
similar physicochemical properties (for example F → Y) get a better score than
exchanges between residue types that widely differ in their properties.

2. An alignment matrix (Fig. 25.4). The axes of this matrix correspond to the two
sequences to align, and the matrix elements are simply the values from the

Figure 25.3. A typical residue exchange or scoring matrix used by alignment algorithms. Because

the score for aligning residues A and B is normally the same as for B and A, this matrix is symmetric.
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Figure 25.4. The alignment matrix for the sequences VATTPDKSWLTV and ASTPERASWLGTA,

using the scores from Figure 25.3. The optimum path corresponding to the alignment on the right

side is shown in gray. Residues with similar properties are marked with a star (*). The dashed line

marks an alternative alignment that scores more points but requires opening a second gap.

residue exchange matrix (Fig. 25.3) for a given pair of residues. During the
alignment process, one tries to find the best path through this matrix, start-
ing from a point near the top left, and going down to the bottom right. To
make sure that no residue is used twice, one must always take at least one
step to the right and one step down. A typical alignment path is shown in
Figure 25.4. At first sight, the dashed path in the bottom right corner would
have led to a higher score. However, it requires the opening of an additional
gap in sequence A (Gly of sequence B is skipped). By comparing thousands
of sequences and sequence families, it became clear that the opening of gaps
is about as unlikely as at least a couple of nonidentical residues in a row. The
jump roughly in the middle of the matrix, however,  is justified, because after
the jump we earn lots of points (5,6,5), which would have been (1,0,0) without
the jump. The alignment algorithm therefore subtracts an “opening penalty” for
every new gap and a much smaller “gap extension penalty” for every residue
that is skipped in the alignment. The gap extension penalty is smaller simply
because one gap of three residues is much more likely than three gaps of one
residue each.

In practice, one just feeds the query sequence to one of the countless BLAST
servers on the web, selects a search of the PDB, and obtains a list of hits—the modeling
templates and corresponding alignments (Fig. 25.2).

Step 2: Alignment Correction

Having identified one or more possible modeling templates using the fast methods
described above, it is time to consider more sophisticated methods to arrive at a bet-
ter alignment.

Sometimes it may be difficult to align two sequences in a region where the percent-
age sequence identity is very low. One can then use other sequences from homologous
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Sequence A:
LTLTLTLT

Sequence B:
YAYAYAYAY

−LTLTLTLT
YAYAYAYAY

LTLTLTLT−
YAYAYAYAY

or

Sequence C:
TYTYTYTYT

−LTLTLTLT−

TYTYTYTYT−

−YAYAYAYAY

Figure 25.5. A pathological alignment problem. Sequences A and B are impossible to align,

unless one considers a third sequence C from a homologous protein.

proteins to find a solution. A pathological example is shown in Figure 25.5: Suppose
you want to align the sequence LTLTLTLT with YAYAYAYAY. There are two equally
poor possibilities, and only a third sequence, TYTYTYTYT, that aligns easily to both
of them can solve the issue.

The example above introduced a very powerful concept called “multiple sequence
alignment.” Many programs are available to align a number of related sequences,
for example CLUSTALW (Thompson, Higgins, and Gibson, 1994), and the resulting
alignment contains a lot of additional information. Think about an Ala → Glu mutation.
Relying on the matrix in Figure 25.3, this exchange always gets a score of 1. In the
3D structure of the protein, it is however very unlikely to see such an Ala → Glu
exchange in the hydrophobic core, but on the surface this mutation is perfectly normal.
The multiple sequence alignment implicitly contains information about this structural
context. If at a certain position only exchanges between hydrophobic residues are
observed, it is highly likely that this residue is buried. To consider this knowledge
during the alignment, one uses the multiple sequence alignment to derive position-
specific scoring matrices, also called profiles (Taylor, 1986, Dodge, Schneider, and
Sander, 1998).

When building a homology model, we are in the fortunate situation of having an
almost perfect profile—the known structure of the template. We simply know that a
certain alanine sits in the protein core and must therefore not be aligned with a gluta-
mate. Multiple sequence alignments are nevertheless useful in homology modeling, for
example, to place deletions (missing residues in the model) or insertions (additional
residues in the model) only in areas where the sequences are strongly divergent. A
typical example for correcting an alignment with the help of the template is shown in
Figures 25.6 and 25.7. Although a simple sequence alignment gives the highest score
for the wrong answer (alignment 1 in Fig. 25.6), a simple look at the structure of the
template reveals that alignment 2 is correct, because it leads to a small gap, compared
to a huge hole associated with alignment 1.

Figure 25.6. Example of a sequence alignment where a three-residue deletion must be modeled.

While the first alignment appears better when considering just the sequences (a matching proline

at position 7), a look at the structure of the template leads to a different conclusion (Figure 25.7).
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Figure 25.7. Correcting an alignment based on the structure of the modeling template (Cα-trace

shown in black). While the alignment with the highest score (dark gray, also in Figure 25.6) leads

to a gap of 7.5 Å between residues 7 and 11, the second option (white) creates only a tiny hole of

1.3 Å between residues 5 and 9. This can easily be accommodated by small backbone shifts. (The

normal Cα−Cα distance of 3.8 Å has been subtracted).

Step 3: Backbone Generation

When the alignment is ready, the actual model building can start. Creating the backbone
is trivial for most of the model: One simply copies the coordinates of those template
residues that show up in the alignment with the model sequence (Fig. 25.2). If two
aligned residues differ, only the backbone coordinates (N,Cα,C and O) can be copied.
If they are the same, one can also include the side chain (at least the more rigid side
chains, since rotamers tend to be conserved).

Experimentally determined protein structures are not perfect (but still better than
models in most cases). There are countless sources of errors, ranging from poor electron
density in the X-ray diffraction map to simple human errors when preparing the PDB
file for submission. A lot of work has been spent on writing software to detect these
errors (correcting them is even more difficult), and the current count is at more than
10,000,000 problems in the 17,000 structures deposited in the PDB by the end of
2001. It is obvious that a straightforward way to build a good model is to choose
the template with the fewest errors (the PDBREPORT database [Hooft et al., 1996]
at www.cmbi.nl/gv/pdbreport can be very helpful). But what if two templates are
available, and each has a poorly determined region, but these regions are not the
same? One should clearly combine the good parts of both templates in one model—an
approach known as multiple template modeling. (The same applies if the alignments
between the model sequence and possible templates show good matches in different
regions). Although in principle multiple template modeling is simple  (and done by
automated modeling servers such as Swiss-Model [Peitsch, Schwede, and Guex, 2000]),
it is difficult in practice to achieve results that are really closer to the true structure
than all the templates. Nevertheless, it is possible, as has been shown by AndrejŠalis’ 
group in CASP4 (see Chapter 24).

Step 4: Loop Modeling

In the majority of cases, the alignment between model and template sequence contains
gaps. Either gaps in the model sequence (deletions as shown in Figs. 25.6 and 25.7)
or in the template sequence (insertions). In the first case, one simply omits residues
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from the template, creating a hole in the model that must be closed. In the second
case, one takes the continuous backbone from the template, cuts it, and inserts the
missing residues. Both cases imply a conformational change of the backbone. The good
news is that conformational changes cannot happen within regular secondary structure
elements. It is therefore safe to shift all insertions or deletions in the alignment out of
helices and strands, placing them in loops and turns. The bad news is that these changes
in loop conformation are notoriously difficult to predict (the big unsolved problem in
homology modeling). To make things worse, even without insertions or deletions we
often find quite different loop conformations in template and target. Three main reasons
can be identified (Rodriguez, http://www.cmbi.kun.nl/gv/articles/text/gambling.html):

1. Surface loops tend to be involved in crystal contacts, leading to a significant
conformational change between template and target.

2. The exchange of small to bulky side chains underneath the loop pushes it
aside.

3. The mutation of a loop residue to proline or from glycine to any other residue. In
both cases, the new residue must fit into a more restricted area in the Ramachan-
dran plot, which most of the time requires conformational changes of the loop.

There are two main approaches to loop modeling:

1. Knowledge based: one searches the PDB for known loops with endpoints that
match the residues between which the loop has to be inserted, and simply
copies the loop conformation. All major molecular modeling programs and
servers support this approach (e.g., 3D-Jigsaw [Bates and Sternberg, 1999],
Insight [Dayringer, Tramontano, and Fletterick, 1986], Modeller [Sali and Blun-
dell, 1993], Swiss-Model [Peitsch, Schwede, and Guex, 2000], or WHAT IF
[Vriend, 1990]).

2. Energy based: as in true ab initio fold prediction, an energy function is used
to judge the quality of a loop. Then this function is minimized, using Monte
Carlo (Simons et al., 1999) or molecular dynamics techniques (Fiser, Do, and
Sali, 2000) to arrive at the best loop conformation. Often the energy function
is modified (e.g., smoothed) to facilitate the search (Tappura, 2001).

At least for short loops (up to 5–8 residues), the various methods have a reasonable
chance of predicting a loop conformation that superimposes well on the true structure.
As mentioned above, surface loops tend to change their conformation due to crystal
contacts. So if the prediction is made for an isolated protein and then found to differ
from the crystal structure, it might still be correct.

Step 5: Side-Chain Modeling

When we compare the side-chain conformations (rotamers) of residues that are con-
served in structurally similar proteins, we find that they often have similar χ1-angles
(i.e., the torsion angle about the Cα−Cβ bond). It is therefore possible to simply
copy conserved residues entirely from the template to the model (see also Step 3) and
achieve a higher accuracy than by copying just the backbone and repredicting the side
chains. In practice, this rule of thumb holds only at high levels of sequence identity,
when the conserved residues form networks of contacts. When they get isolated (<35%
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sequence identity), the rotamers of conserved residues may differ in up to 45% of the
cases (Sanchez and Sali, 1997).

Practically all successful approaches to side-chain placement are at least partly
knowledge based. They use libraries of common rotamers extracted from high-
resolution X-ray structures. The various rotamers are tried successively and scored
with a variety of energy functions. Intuitively, one might expect rotamer prediction to
be computationally demanding due to the combinatorial explosion—the choice of a
certain rotamer automatically affects the rotamers of all neighboring residues, which in
turn affect their neighbors and so on. With 100 residues and on average ∼5 rotamers
per residue, one would already end up at 5100 different combinations to score. A lot of
research has been spent on the development of methods to make this enormous search
space tractable (Desmet et al., 1992). The number of combinations is in fact so large,
that even nature could not try all of them during the folding process, which indicates
that there must exist mechanisms to shrink down the search space.

Beside the trivial fact that copying conserved rotamers from the template often
splits up the protein into distinct regions where rotamers can be predicted indepen-
dently, the key to handling the combinatorial explosion lies in the protein backbone.
Certain backbone conformations strongly favor certain rotamers (allowing, for example,
a hydrogen bond between side chain and backbone) and thus greatly reduce the search
space. For a given backbone conformation, there may be only one strongly populated
rotamer that can be modeled right away, thereby providing an anchor for surrounding,
more flexible side chains. An example for a backbone conformation that favors two
different tyrosine rotamers is shown in Figure 25.8. These position-specific rotamer
libraries are widely used today (de Filippis, Sander, and Vriend, 1994, Stites, Meeker,
and Shortle, 1994, Dunbrack and Karplus, 1994). To build such a library, one takes
high-resolution structures and collects all stretches of three to seven residues (depending
on the method) with a given amino acid at the center. To predict a rotamer, the corre-
sponding backbone stretch in the template is superposed on all the collected examples,

Figure 25.8. Example of a backbone-dependent rotamer library. The current backbone confor-

mation (space-filling display) favors two different rotamers for Tyrosine (sticks), which appear

about equally often in the database.
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and the possible side-chain conformations are selected from the best backbone matches
(Chinea et al., 1995).

Further evidence that the combinatorial problem of rotamer prediction is far smaller
than originally believed was found recently. Xiang and Honig (2001) first removed
one single side chain from known structures and repredicted it. In a second step,
they removed all the side chains and added them again using the same simple search
strategy. Surprisingly, it turned out that the accuracy was only marginally higher in
the much easier first case.

The prediction accuracy is usually quite high for residues in the hydrophobic core
where more than 90% of all χ1-angles fall within ±20◦ from the experimental values,
but much lower for residues on the surface where the percentage is often even below
50%. There are two reasons for this:

1. Experimental reasons: flexible side chains on the surface tend to adopt multiple
conformations, which are additionally influenced by crystal contacts. So even
experiment cannot provide one single correct answer.

2. Theoretical reasons: the energy functions used to score rotamers can easily
handle the hydrophobic packing in the core (mainly Van der Waals interactions),
but are not precise enough to get the complicated electrostatic interactions on
the surface right, including hydrogen bonds with water molecules and associated
entropic effects.

It is important to note that the prediction accuracies given in most publications
cannot be reached in real-life applications. This situation is simply due to the fact
that the methods are evaluated by taking a known structure, removing the side chains
and repredicting them. The algorithms thus rely on the correct backbone, which is not
available in homology modeling. The backbone of the template often differs signif-
icantly from the target. The rotamers must thus be predicted based on an incorrect
backbone and prediction accuracies tend to be lower in this case.

Step 6: Model Optimization

The problem just mentioned above leads to a classical chicken-and-egg situation. To
predict the side-chain rotamers with high accuracy, we need the correct backbone,
which in turn depends on the rotamers and their packing. The common approach to
such a problem is an iterative one: predict the rotamers, then the resulting shifts in
the backbone, then the rotamers for the new backbone, and so on, until the procedure
converges. This method boils down to a sequence of rotamer prediction and energy
minimization steps. The latter use the methods from the loop-modeling step above, but
this time they must be applied to the entire protein structure, not just an isolated loop.
This requires an enormous precision in the energy function, because there are many
more paths leading away from the answer (the target structure) than toward it, which
is why energy minimization must be used carefully. At every minimization step, a few
big errors (like bumps, i.e., too short atomic distances) are removed while many small
errors are introduced. When the big errors are gone, the small ones start accumulating
and the model moves away from the target (Fig. 25.9). As a rule of thumb, today’s
modeling programs therefore either restrain the atom positions and/or apply only a few
hundred steps of energy minimization. In short, model optimization does not work until
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Figure 25.9. The average rmsd between models and targets during an extensive energy min-

imization of 14 homology models with two different force fields. Both force fields improve the

models during the first ∼500 energy minimization steps but then the small errors sum up in the

classic force field and guide the minimization in the wrong direction, away from the target while

the self-parameterizing force field goes in the right direction. To reach experimental precision,

the minimization would have to proceed all the way down to ∼0.5 Å, which is the uncertainty in

experimentally determined coordinates.

energy functions (force fields) get more precise. Two ways to achieve that precision
are currently being pursued:

1. Quantum force fields: protein force fields must be fast to handle these large
molecules efficiently, energies are therefore normally expressed as a func-
tion of the positions of the atomic nuclei only. The continuous increase of
computer power has now finally made it possible to apply methods of quan-
tum chemistry to entire proteins, arriving at more accurate descriptions of the
charge distribution (Liu et al., 2001). It is however still difficult to overcome
the inherent approximations of today’s quantum chemical calculations. Attrac-
tive Van der Waals forces are, for example, so difficult to treat, that they
must often be completely omitted. While providing more accurate electrostat-
ics, the overall precision achieved is still about the same as in the classical
force fields.

2. Self-parameterizing force fields: the precision of a force field depends to a
large extent on its parameters (e.g., Van der Waals radii, atomic charges).
These parameters are usually obtained from quantum chemical calculations
on small molecules and fitting to experimental data, following elaborate rules
(Wang, Cieplak, and Kollman, 2000). By applying the force field to proteins,
one implicitly assumes that a peptide chain is just the sum of its individ-
ual small molecule building blocks—the amino acids. Alternatively, one can
just state a goal, for example, improve the models during an energy mini-
mization, and then let the force field parameterize itself while trying to opti-
mally fulfill this goal (Krieger, Koraimann, and Vriend, 2002). This method 
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leads to a computationally rather expensive procedure. Take initial parame-
ters (for example, from an existing force field), change a parameter randomly,
energy minimize models, see if the result improved, keep the new force field
if yes, otherwise go back to the previous force field. With this procedure,
the force field precision increases enough to go in the right direction during
an energy minimization (Fig. 25.9), but experimental precision is still far out
of reach.

The most straightforward approach to model optimization is simply to run a molec-
ular dynamics simulation of the model. Such a simulation follows the motions of the
protein on a femtosecond (10−15 s) timescale and mimics the true folding process. One
thus hopes that the model will complete its folding and “home in” to the true structure
during the simulation. The advantage is that a molecular dynamics simulation implic-
itly contains entropic effects that are otherwise difficult to treat; the disadvantage is
that the force fields are again not precise enough to make it work. (One must in fact
be happy if the model is not messed up during the simulation). Nevertheless, one of
the main tasks of Blue Gene, the forthcoming fastest computer in the world, will be
to run exactly this type of molecular dynamics simulations (IBM Blue Gene team,
2001). More precise force fields will have to be available when Blue Gene goes online
in 2005.

Step 7: Model Validation

Every homology model contains errors. The number of errors (for a given method)
mainly depends on two values:

1. The percentage sequence identity between template and target. If it is greater
than 90%, the accuracy of the model can be compared to crystallographically
determined structures, except for a few individual side chains (Chothia and
Lesk, 1986; Sippl, 1993). From 50% to 90% identity, the rms error in the mod-
eled coordinates can be as large as 1.5 Å, with considerably larger local errors.
If the sequence identity drops to 25%, the alignment turns out to be the main
bottleneck for homology modeling, often leading to very large errors.

2. The number of errors in the template.

Errors in a model become less of a problem if they can be localized. It is, for
example, hardly important that a loop far away from an enzyme’s active site is placed
incorrectly. An essential step in the homology modeling process is therefore the ver-
ification of the model. There are two principally different ways to estimate errors in
a structure:

1. Calculating the model’s energy based on a force field: This method checks
if the bond lengths and bond angles are within normal ranges, and if there are
lots of bumps in the model (corresponding to a high Van der Waals energy).
Essential questions such as “Is the model folded correctly?” cannot yet be
answered this way, because completely misfolded but well-minimized models
often reach the same force field energy as the target structure (Novotny, Rashin,
and Bruccoleri, 1988). This result is mainly due to the fact that molecular
dynamics force fields do not explicitly contain entropic terms (such as the
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hydrophobic effect), but rely on the simulation to generate them. Although
this problem can be addressed by extending the force field and adding, for
example, solvation, the major drawback is that one always obtains a single
number for the entire protein and cannot easily trace problems down to indi-
vidual residues.

2. Determination of normality indices that describe how well a given characteristic
of the model resembles the same characteristic in real structures. Many features
of protein structures are well suited for normality analysis. Most of them are
directly or indirectly based on the analysis of interatomic distances and contacts.
Some published examples are:

• General checks for the normality of bond lengths, bond and torsion angles
(Morris et al., 1992; Czaplewski et al., 2000) are good checks for the quality
of experimentally determined structures, but are less suitable for the evalu-
ation of models because the better model-building programs simply do not
make this kind of error.

• Inside/outside distributions of polar and apolar residues can be used to detect
completely misfolded models (Baumann, Frommel, and Sander, 1989).

• The radial distribution function for a given type of atom (i.e., the probability
to find certain other atoms at a given distance) can be extracted from the
library of known structures and converted into an energylike quantity, called a
“potential of mean force” (Sippl, 1990). Such a potential can easily distinguish
good contacts (e.g., between a Cγ of valine and a Cδ of isoleucine) from bad
ones (e.g., between the same Cγ of valine and the positively charged amino
group of lysine).

• If not only the distance, but also the direction of atomic contacts is taken into
account, one arrives at 3D distribution functions that can also easily identify
misfolded proteins and are good indicators of local model building problems
(Vriend and Sander, 1993).

Most methods used for the verification of models can also be applied to exper-
imental structures (and hence to the templates used for model building). A detailed
verification is essential when trying to derive new information from the model, either
to interpret or predict experimental results or plan new experiments.

In summary, it is safe to say that homology modeling is unfortunately not as easy
as stated in the beginning. Ideally, homology modeling uses threading (Chapter 26)
to improve the alignment, and ab initio folding (Chapter 27) to predict the loops
and molecular dynamics simulations with a perfect force field to home in to the true
structure. Doing all that correctly will keep researchers busy for a long time, leaving
lots of fascinating discoveries to good old experiment.
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