Site icon Pharmawiki.in

Skeletal Muscle Relaxants Drugs Classification Uses Pharmacology PPT + PDF Mechanism of Action

Skeletal Muscle Relaxants Drugs

Skeletal Muscle Relaxants

  1. Peripherally acting muscle relaxants[These act peripherally at neuromuscular junction]
  2. a) Non-Depolarizing Blockers (Competitive Blockers)
  1. Long Acting: d-Tubocurarine (d-TC), Metocurine, Doxacurium, pancuronium, pipecuronium, gallamine
  2. Intermediate acting: Atracurium, Cisatracurium, Vecuronium, Rcuronium

d-Tubocurarine: – Not clinical used do to its histaminic effects. • Succinylcholine: – SCh is the most commonly used muscle relaxant for passing tracheal tube. It induces rapid, complete and predictable paralysis with spontaneous recovery in ~5 min. – Occasionally SCh is used by continuous i.v. infusion for producing controlled muscle relaxation of longer duration. – It should be avoided in younger children unless absolutely necessary, because risk of hyperkalaemia and cardiac arrhythmia is higher

Pancuronium: – It is a synthetic steroidal compound, ~5 times more potent and longer acting than d-TC. – Because of longer duration of action, needing reversal, its use is now restricted to prolonged operations, especially neurosurgery. • Pipecuronium: – Muscle relaxant with a slow onset and long duration of action; steroidal in nature; recommended for prolonged surgeries. Nondepolarizing blockers – Individual compounds

 Vecuronium: – It is a most commonly used muscle relaxant for routine surgery and in intensive care units.. • Atracurium: – Four times less potent than pancuronium and shorter acting. • Rocuronium: – Muscle relaxant with a rapid onset and intermediate duration of action which can be used as alternative to SCh for tracheal intubation without the disadvantages of depolarizing block and cardiovascular changes. Nondepolarizing blockers – Individual compounds

 iii.      Short Acting: Mivacurine, Rapacuronium

  1. b) Depolarizing Blockers (persistent depolarizers)
  1. Centrally Acting Muscle Relaxants

III. Directly Acting Muscle Relaxants

  1. Misc Group

Comparison of d-Tubocurarine & Succinylcholine

Parameters d-Tubocurarine Succinylcholine
1.Mechanism Competitive blockade at NM receptors Persistent depolarization of NM receptors followed by their desensitization
2.Potency ++ (Moderate) + (less)
3.Onset 4-5 min 1 min
4.Duration 30 – 50 min with no muscle sore 5 – 6 min followed by muscle sore
5.Type of Relaxation Progressive flaccid paralysis Initial fasciculations followed by flaccid paralysis
6.Effect of Neostigmine Reversal i.e antagonism Potentiation on effect
7.NM  blocking drugs Potentiation on effect No effect
8.Hypothermia Decreases effect Increased effect
9.Histamine release ++ (Moderate) Negligible
10.    BP Hypotension No effect
11.    Cardiac Muscarinic receptors No effect Stimulates. Bradycardia in low doses, tachycardia in large doses
12.    Respiratory effects Bronchospasm Nil
13.    GIT Effects Constipation Nausea, Vomitting
14.    Serum K+ levels No change Hyperkalaemia
15.    Intraocular pressure No change Raised
16.    Pharmacogenetic variation in metabolism Nil (it is excreted through kidney) Metabolized by pseudocholinesterase (exhibit prolonged apnoea)
17.    Other Nil Malignanat hyperthermia



Mechanism of Action of Skeletal Muscle Relaxants Drugs:



Baclofen

Baclofen Therapeutic Uses

Baclofen Side Effects

Dantrolene

Dantrolene Therapeutic Uses

References •

Tripathi KD. Essentials of Medical Pharmacology, 7th Ed, New Delhi: Jaypee Brothers Medical Publisher (P) Ltd, 2013.

Exit mobile version